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Abstract-Strain-magnitude space is defined by an orthogonal coordinate system using the natural principal 
strains E,, E,, E,. Distance from the origin provides an invariant measure of total-strain magnitude E,, which can 
be decomposed into two orthogonal components: volume E, and deviatoric Ed strain. The volume-strain axis E, 
is equidistant from the E,, E,, E, axes, and the Ed component lies in an orthogonal section called the deviatoric 
section. E, and Ed are independent of the rotational component of the deformation and are shown to be 
fundamental measures of strain magnitude. 

The deviatoric section contains the Fhnn and Nadai diagrams, which are commonly used to identify strain 
symmetry (oblate vs prolate). The Nadai diagram is preferred because it provides an undistorted representation 
of the deviatoric section. Other sections that include the volume-strain axis are better suited for distinguishing 
strain type (flattening vs constriction). 

Strain-magnitude space ignores the directional information contained in strain-tensor data. This leads to a 
significant bias which is illustrated by comparing a strain-magnitude distribution with its average, as determined 
by a tensor-averaging method. The mode of the distribution will generally give an unbiased estimate of the 
average volume strain and an estimate of the average deviatoric strain on the high side. 

INTRODUCTION 

An important objective in structural geology is the 
quantitative measurement and analysis of deformation 
associated with the development of geologic structures, 
both large and small. A complete characterization of 
distortion, rotation, and dilation associated with a gen- 
eral deformation at a material point requires specifi- 
cation of the nine components of the deformation- 
gradient tensor. Most studies, however, focus only on 
the directions and relative magnitudes of the principal 
strains because these measurements are generally fairly 
easy to make (e.g. Ramsay & Huber 1983). In fact, the 
plots most commonly used to analyze strain data, such as 
the Flinn and Nadai diagrams (Flinn 1962, 1978, Nadai 
1963, pp. 70-76, Hsu 1966, Hossack 1968), are designed 
specifically to display relative strain measurements. 
Ramsay & Wood (1973), Hobbs et al. (1976), and 
Ramsay & Huber (1983), among others, have given 
careful consideration to the limitations of these dia- 
grams, especially for those cases involving significant 
volume strain. Nonetheless, these diagrams by them- 
selves do not provide an adequate representation of the 
full variability of strain-magnitude data. 

Nadai (1950, 1963), Hsu (1966), and Elliott (1972) 
introduced the idea of using the natural principal 
strains+qual to the logarithm of the principal 
stretches-to define a three-dimensional ‘strain- 
magnitude’ space (Fig. 1). Nadai (1963), Hsu (1966), 
and Hossack (1968) proposed displaying relative strain 
data on the octahedral plane of this strain-magnitude 
space (Figs. lb & c). The resulting plot has been called a 
Hsu diagram (Hobbs et al. 1976, p. 37) but Nadai 
diagram seems more appropriate (Flinn 1978) given the 
precedence of Nadai’s (1963, pp. 70-75) publication. 
Nadai (1963) also provided an early discussion of the 

concept of a strain path (cf. Flinn 1962, 1978, Elliott 
1972), with a particular focus on the relationship be- 
tween deformational work and the distance in strain- 
magnitude space. Flinn (1978, p. 294) and Ramsay & 
Huber (1983, pp. 202-203), among others, have dis- 
counted the Nadai diagram, because the relationship 
between work and distance is not applicable for non- 
coaxial deformations. This conclusion overlooks the 
broader physical significance of distance in strain- 
magnitude space, a point that is developed below. 

My objective here is to review the concept of strain- 
magnitude space and to demonstrate its advantages for 
interpretation of both relative and absolute strain data. 
As an example dataset, I use the results of a strain study 
by Ring & Brandon (1994) of sandstones from the 
eastern part of the Franciscan Complex of California, 
which was accreted and deformed in an accretionary 
wedge under high pressure-low temperature conditions 
during the Cretaceous and Early Cenozoic (Yolla Bolly 
and Valentine Springs units: Blake et al. 1988, Jayko & 
Blake 1989). The strain measurements are based on 
dimensional changes of detrital grains which have been 
truncated by the development of a pressure-solution 
cleavage and on the modal abundance of directed fiber 
overgrowths (Brandon et al. 1994). The final results 
include estimates of the directions and absolute magni- 
tudes of the principal stretches. These data are used here 
to illustrate general concepts. The strain measurement 
methods and geologic interpretations will be presented 
elsewhere. 

STRAIN-MAGNITUDE SPACE 

Six independent variables are required to fully specify 
the finite strain at a material point. The usual convention 
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Fig. 1. (a) Three-dimensional plot of strain-magnitude space. Logar- 
ithmic axes ensure that the space is properly scaled for the natural 
principal strains E,, E,. EZ, while retaining the more familiar measure 
of stretch S,, Sy, S, as the units for the axis tick labels. The diagonal 
axis labeled E, 1s the volume-strain axis. Strain data are for sandstones 
of the eastern Franciscan Complex, California (Ring & Brandon 
1994). (b) Layout showing the geometry of the octahedral normal and 
octahedral plane, which correspond to the volume-strain axis and the 
deviatoric section, respectively. (c) The deviatoric section is formed by 
projecting data parallel to the volume-strain axis onto the octahedral 
plane. The shaded sector shows the area covered by the Flinn and 
Nadai diagrams. The boundaries of this sector are defined by the 
convention E, 3 E, 2 E,. The axes show the projected form of the E,, 
EY, E, axes as viewed looking down the volume-strain axis. They are 
resealed as natural principal deviatoric strains E:. E;, EL, where 

deviatoric strain is defined as E’ = E - EJ3. 

is to use three variables to describe the orientation of the 
principal strain directions (e.g. Euler angles) and the 
remaining three variables to describe the magnitude of 
the principal strains, as represented by the principal 
elongations, e,, eY, e,, or the principal stretches, S,, S,, 
S,. Elongation is defined as e = (If - /J/l,, and stretch as 
S = lflli, where li and 1,are the initial and final lengths of 
a material line. The subscripts x, y, z refer to maximum 
extension, intermediate, and maximum contraction, 
where e, 3 eY 2 e, and S, 2 Sy 2 S,. The vectors x, y, z 
indicate the orientations of the principal strain axes. 

The principal strains are invariants of the strain tensor 
because they remain unaffected by changes in the refer- 
ence frame (i.e. invariant upon transformation). Other 
variables can be used as invariants. In fact, one of our 
objectives is to find a set of invariants that more clearly 
illustrates the magnitude information contained in a 
strain tensor (cf. Ramsay & Huber, 1983, p. 200). 

The ideal plot for representing strain magnitudes 
would be a Euclidean vector space where orthogonal 
axes and distance are clearly defined. Neither the princi- 
pal stretches nor the principal elongations are suited for 
this application. Stretch is an asymmetric measure, with 
contraction occupying a range 0 to 1, and extension, 1 to 
CQ. During deformation, each strain increment causes 
dimensional changes that are proportional to the current 
dimensions of the deforming material. As a result, both 
elongation and stretch accumulate nonlinearly (Nadai 
1950, 1963). If these measures were used to construct a 
strain-magnitude space, the distance between points in 
the space would lack any clear physical significance 
because of the nonlinear relationship between the strain 
increments and the integrated result. 

The natural principal strains, E,, Ey, E,, provide a 
useful basis for constructing a strain-magnitude space. 
Natural strain is defined by E = In(S) and has the same 
units as elongation (In indicates the natural logarithm). 
The upper-case epsilon E is preferred here to the more 
commonly-used symbols E or F because E is sometimes 
used to represent elongation and because the overbar 
used for F can be taken as indicating an average value. 
The concept of natural strain originated from the obser- 
vation that the longitudinal stretch in a rod extended at a 
constant strain rate 6 accumulates logarithmically with 
time (cf. Nadai 1950, p. 131), as indicated by 

E(~)=lnS(r)=ln~~=j~~=j:1Edi=PT. (1) 

where 1 represents the length of the rod as a function of 
time, and t indicates the total duration of the defor- 
mation. The reason that stretch accumulates nonlinearly 
is that for each strain increment, the change in length of 
a material line is relative to the current length of the line. 
Nadai (1937) introduced the term ‘natural strain’ to 
emphasize that E represents the strain relative to the 
evolving length of the material (i.e. the natural state), as 
opposed to the initial length, as is commonly the practice 
for experimental deformation. Ramsay & Huber (1983, 
p. 281) objected to this term and suggested ‘logarithmic 
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strain’ as an alternative, but this is unsatisfactory be- 
cause some natural strain parameters are not related to 
the logarithm of their conventional counterparts (e.g. 
natural vs conventional octahedral shear strain; com- 
pare equations 10 and 12). 

Following Nadai (1963) and Elliott (1972), the natural 
principal strains are used to define a Euclidean vector 
space with points in the space defined by the position 
vector E,k = EXi + E$ + E&, where ? is a unit vector 
representing the orientation of the position vector and :I, 
j, i are an orthogonal set of unit vectors. Distance is 

defined in the usual fashion; for example, 

E, = d\/E; + E; + E; (2) 

gives the distance from the origin. In this regard, E, can 
be viewed as an invariant measure of the total magnitude 
of the strain tensor. An example of this three- 
dimensional space is shown in Fig. l(a). Note that the 
axes of the plot are scaled logarithmically and labeled 
using units of stretch. In this manner, we can introduce 
correctly scaled axes while retaining stretch as a more 
familiar measure of strain. 

VOLUME-STRAIN AXIS 

Another invariant for the strain tensor is volume 
strain, which is represented here as volume stretch, 
S, = VflVi, where Vi and Vf are the initial and final 
volumes of a ‘representative elementary volume’ 
(REV). The REV is defined by a set of material points 
that mark the boundary of a closed three-dimensional 
surface, usually taken to be a sphere of unit radius. 
Consideration of the transformation of a unit sphere into 
a deformed ellipsoid indicates the following simple re- 
lationship between the principal stretches and the vol- 
ume stretch: S, = S,S,S,. Using natural strains, this 
relationship is E, = E, + EY + E,, where E, is the natu- 
ral volume strain. 

In strain-magnitude space, we can identify a volume- 
strain axis oriented at equal angles to the E,, E,, E, axes 
(E, in Fig. 1). This direction is called the octahedral 
normal (or space diagonal) because it is normal to the 
octahedral plane (Fig. lb). These terms refer to a 
hypothetical octahedron symmetrically oriented with 
respect to the origin and the E,, E,, E, axes (Fig. lb). 
For our purposes, the octahedral normal and octahedral 
plane contain a new set of axes that can be used to span 
strain-magnitude space. A volume strain would appear 
as a translation parallel to the octahedral normal, 
whereas a distortional strain would appear as a trans- 
lation in some direction parallel to the octahedral plane. 

Several factors can contribute to the overall volume 
stretch, as illustrated by the following equation (modi- 
fied from Brimhall & Dietrich 1987): 

where n is the average porosity as a fractional ratio, p is 
56 1,:10-c 

the average grain density, and m is the solid mass inside 
the REV. The subscripts i and f indicate the initial and 
final states. The terms in (3) can be represented as three 
volume-stretch components, S,, S,, and S,, whose 
product equals S,, the total volume stretch. S,, is the 
volume stretch due to a net change in pore fluid content 
inside the REV, with compaction of sediments rep- 
resenting a familiar example. S, is the volume stretch 
produced by changes in the average mineral density 
within the REV, as might result from diagenetic or 
metamorphic reactions (i.e. polymorphic transform- 
ations, solid-solid reactions, devolatilization reactions, 
etc.). S, is the volume stretch due to transport of the 
solid component of the rock over a length scale greater 
than that defined by the REV. This type of strain is 
called a mass-transfer volume strain and most commonly 
occurs by dissolution, transport, and precipitation in the 
presence of a moving fluid. Common examples include 
the formation of stylolites and veins. 

From the view point of continuum mechanics, a vol- 
ume stretch is defined as an isotropic change in volume 
at a point. An idea that comes up frequently in dis- 
cussions is the possibility of introducing an anisotropic 
volume-change tensor to represent the directional 
aspects of the volume-change process. In principle, 
there is nothing wrong with this approach, but in prac- 
tice, its application will be limited to certain simple types 
of deformation where at least one of the principal 
stretches remained unchanged and where the mechan- 
isms responsible for the volume change operated coax- 
ially with those responsible for any closed-system 
distortion. Examples might include basinal compaction 
of sediment or plane-strain pressure solution. As a 
counter example, consider the case of a constrictional 
deformation involving contraction by dissolution in they 
and z directions, extension in the x direction by the 
formation of fiber overgrowths, and a volume strain by 
mass loss as indicated by E, + E, + E,. For this case, 
there is no way to separate the relative contributions that 
dissolution in the y and z directions have made to the 
overall mass loss. As a result, we do not have enough 
information to resolve an anisotropic volume-change 
tensor. Thus, it is my conclusion that the conventional 
isotropic measures, such as S, and E,, provide a more 
widely applicable representation of the volume-change 
process. 

DEVIATORIC STRAIN 

The distortional aspect of the strain can be rep- 
resented by projecting strain-magnitude data onto the 
octahedral plane to form what is called here the devia- 
toric section. In this section, the E,, E,, E, axes are now 
represented by the principal deviatoric strains, either 
Ek, E;, EL or SL, S,:,, S& The natural deviatoric strains 
are defined by the relationship: E’ = E - EJ3, and the 
deviatoric stretches by: S’ = S/S:“. These measures can 
be viewed as relative strains normalized to a constant 
volume, so that E: + E,; + EL = 0 and Si SJ Si = 1. 
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The more familiar measures of deviatoric strain are the 
principal axial ratios, R,, R,, and R,,, which have the 
following relationships: 

E Rxy = lnR, = ln(&/&) = E, - E, = E: - E;, 

E Ryz = lnR,, = ln(,S,/s,) = E, - E, = E; - EL, (4) 

E RX-2 = lnR,, = ln(S,/s,) = E, - E, = El - EL. 

E Rxy, E,z, ERXZ are used as a short-hand notation for 
the logarithm of the principal axial ratios. Nadai (1937, 
his equation 21) called these the natural principal shears. 

Because of the convention E, > E, 3 E,, the only 
accessible part of the deviatoric section is the sector 
bounded by the + EL and - Ek axes (Fig. lc). This sector 
marks the region covered by both the Flinn and Nadai 
diagrams (Fig. 2). The only difference between these 
diagrams is that +E: and -EL axes are rotated into an 
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Fig. 2. (a) Flinn and (b) Nadai diagrams which show the deviatoric 
component of the deformation. ‘Apparent PS line’ indicates the 
apparent plane-strain line. Strain data are for sandstones of the eastern 
Franciscan Complex as exposed in the Yolla Bolly Mountains 
(squares) and the Diablo Range (circles) (Ring & Brandon 1994). The 
open symbols indicate tensor averages as determined by the method in 
Appendix A. Contours show the magnitude of conventional octahed- 
ral shear Y,,~,, which is a measure of the average distortion. See 
Appendix B for details about the construction of the Nadai diagram. 

orthogonal orientation in the Flinn diagram (Fig. 2a). 
Thus, the Flinn diagram is somewhat easier to construct 
but the Nadai diagram (Fig. 2b) retains an undistorted 
representation of the deviatoric section. The ERxr axis 
(Fig. lc) coincides with the apparent plane strain line 

because the points that plot on this line indicate a plane- 
strain deformation (S, = 1, Ey = 0) but only if the defor- 
mation is isochoric (i.e. constant volume: S, = 1, 
E, = 0). This relationship is illustrated by the geometry 
of the axes in the deviatoric section (Fig. lc): the ERxz 
axis is perpendicular to the E; axis and intersects that 
axis at E; = 0. 

The Flinn and the Nadai diagrams are useful for 
distinguishing the relative shapes of the strain ellipsoids, 
whether prolate (cigar-shaped) or oblate (pancake- 
shaped). Following Hossack (1968), this classification is 
called strain symmetry. If one can make the assumption 
that the deformation was isochoric, then strain sym- 
metry can be used to infer strain type (Ramsay & Huber 
1983, p. 171), whether constrictional (S, < 1, E, < 0), 
plane strain (S, = 1, Ey = 0), or flattening (S, > 1, 
E, > 0). In my opinion, the interpretation of strain type 
using strain symmetry alone is not warranted because 
assumptions about volume strain are difficult to justify in 
the absence of data. 

PHYSICAL SIGNIFICANCE OF DISTANCE IN 
STRAIN-MAGNITUDE SPACE 

We have seen that the natural principal strains E,, E,, 
E,, which are invariants of the strain tensor, can be used 
to define a space where distance is proportional to strain 
magnitude. If we erect an alternative coordinate system 
to span this space, the new variables would represent 
another set of invariants. The cylindrical coordinates E,, 
Ed, and/3 are conceptually useful because the total strain 
magnitude is decomposed into two more familiar ortho- 
gonal components: volume strain E,., and deviatoric 
strain E,, as indicated by: 

E,=m. (5) 

Natural deviatoric strain Ed is more commonly rep- 
resented by the symbols E, and Fs (Nadai 1963, Ramsay 
& Huber 1983); the subscript d is used here to make it 
clear that Ed refers to the deviatoric strain and not the 
total strain. Ed is defined as the projected distance of E,C- 
in the deviatoric section, which is given by (Nadai 1963, 
pp. 50 and 73): 

Ed = V?% s EJ2 + (E, - EZj% (E,~- E,)’ 

= d/E;’ + EC” + EL2. (6) 

This equation describes a cylinder of radius r centered 
on the volume-strain axis, as indicated by the following 
general equation: 

2 = (X - y)’ + (y - 2)2 + (X - z)‘. (7) 

In the deviatoric section, these cylinders would appear 
as a nested set of circles centered on the origin. The 
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variable B indicates the clockwise orientation of Ed in 
the deviatoric section with respect to the ERxz axis (Fig. 
1~). This variable can be viewed as an angular version of 
the Lode’s parameter Y (e.g. Hossack 1968), where: 
v = titanp. 

For purposes of plotting, it is useful to specify the 
cylindrical coordinates E,, Ed, and p in terms of an 
orthogonal set of variables: ERrr, E;, E, (Fig. lc). 
Substitution of these variables into (5) and (6) gives: 

E,?=V%2E,,,i+V%E;rh+E,fi (8) 

and 

Ed = u/(1/2) E;,, + (312) E;‘, (9) 

where I, ti, ii are basis vectors for the ERxr, E;, E, 
coordinate system. 

Nadai (1963, pp. 43-105) made the interesting obser- 
vation that under certain circumstances, strain magni- 
tude could be related to deformational work. In this 
context, deformational work is the work associated with 
internal deformation of a material and should not be 
confused with the total work done on the system (Mal- 
vern 1969, p. 227). Nadai (1963) focused on E, as an 
indirect measure of the distortional work because his 
interest was in the deformation of metals where volume 
strains are negligible. For geologic deformation, we 
need to include the dilational work associated with 
producing a volume strain (Nadai 1963, p. 43). Inspec- 
tion indicates that Nadai’s (1963) analysis is applicable 
for this more generalized case, but the conclusions we 
might draw are still fairly restrictive. 

(1) For coaxial deformation of isotropic linear ductile 
materials (e.g. perfect plasticity, linear viscosity, etc.), 
the length of the strain path is proportional to the 
deformational work (Nadai 1963, p. 87). 

(2) For isotropic ductile materials, including those 
with nonlinear constitutive properties (e.g. strain- 
hardening plasticity, power-law viscosity, etc.), a co- 
axial deformation with a straight strain path requires the 
least amount of deformational work to achieve a speci- 
fied strain magnitude. Possible exceptions to this con- 
clusion might arise for materials that have constitutive 
properties that are dependent on the deformation path. 

The conceptual link between work and strain magni- 
tude is useful, but the conclusions above show that this 
idea has only limited application. A more useful physical 
interpretation is to view strain magnitude as a measure 
of deformation, and not of work. In this context, E, and 
Ed represent fundamental measures of volumetric strain 
and deviatoric strain. The interpretation of E, is already 
clearly defined, but what about Ed? 

The physical interpretation of Ed can be illustrated by 
reference to two measures of octahedral shear strain. 
The first is Iocf, the natural octahedral shear strain, 
which is proportional to E, according to the relation- 
ship: Ed = %%4 Iocr. Natural octahedral shear strain is 
typically represented by Yoct, but an upper-case Ioct is 
used here to avoid the bar overstrike and to be consistent 
with the upper-case epsilon used for natural strain. To 

describe Iocr, we want to view the octahedral plane and 
octahedral normal as spatial features defined at each 
point within the deforming material by the orientation of 
the principal axes of the evolving finite strain tensor for 
that point. Nadai (1963, p. 73) defined Iocr as the time 
integral of the instantaneous shear strain rate acting on 
the octahedral plane. Note that Ioct is not related to any 
material line, but instead represents the integrated 
angular distortion experienced by those material lines 
and planes that pass through the octahedral normal and 
octahedral plane, respectively (Nadai 1950, pp. 115 and 
132). Because orientation is defined with respect to the 
principal finite strain directions, Ioct is solely a function 
of the principal deviatoric strains and is entirely inde- 
pendent of the rotational component of the defor- 
mation. This conclusion is demonstrated by the full 
equation for the natural octahedral shear strain: 

Ioct = 2/3 X’(E; - E;)2 + (E; - E;)2 + (E; - E;)z 

= d/(2/3) E&,,, + 2 E;“. (10) 

Contour surfaces of Ioct have the same form as those for 
Ed (cf. 6,9). In particular, contours of Ioct appear in the 
Nadai diagram as a series of nested circles centered on 
the origin. 

As a fundamental measure of deviatoric strain magni- 
tude, Iocr is flawed because it does not track the distor- 
tion of any specific material features. A useful 
alternative is the conventional octahedral shear strain 

Y OcI which is defined as the amount of shear strain 
recorded by a material line and material plane that start 
with orientations parallel to the octahedral normal and 
octahedral plane, respectively. To determine the final 
orientations of these features, we would need to know 
both the strain and the rotation for the deformation. If 
instead, we are only interested in the magnitude of the 
octahedral shear strain yoct, then the principal deviatoric 
strains are sufficient. 

To demonstrate this point, consider the general 
equation for finite shear strain y (Jaeger & Cook 1979, p. 
457) as a function of the initial orientation of a material 
line defined by the direction cosines 1, m, n. The coordi- 
nate frame is defined by the initial directions of the 
principal finite strains in the unstrained state: 

y2 = [S:(S;” - Yz)mnJ2 + [S;(Si2 - &*)nlj2 

+ [S:(SL2 - s;2)lm12. (11) 

Substitution of the direction cosines m, V%, %%j 
for the octahedral normal into (11) and simplification 
gives: 

Y OcI = 213 

usinh’(E: - E;) + sinh’(E; - EL) + sinhZ(E; - EL) 

(12) 

and 

yocr = 213 &osh2(E,,,) + cosh(E,,) cosh(3E;) - 2, 

(13) 
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Fig. 4. Comparison of natural octahedral shear strain For, with con- 
ventional octahedral shear strain Y(,<,. The solid line indicates the 
approximate relationship between y,,(, and I’,,,, as given by (14). Exact 
values arc indicated by the open symbols and were determined by (IO, 

residuals of - 1.1 percent rclativc to expected values for 7. 12) for the range R,, = 1.0 to 6.0. and St = 0.2.5 to 4.0. 

where the hyperbolic sine and cosine are defined as 
sinh(x) = (e-r - ee”)/2 and cash(x) = (e’ + e-.“)/2. 

To illustrate the physical significance of ycjcr, consider 
the following example. Conventional shear strain y is 
related to angular shear strain li, by: y = tan r/~. Thus, if 
Y<,<, = 1, the final angle between the material line and 
material plane that originated at the octahedral normal 
and octahedral plane, respectively, would be arctan 
(1) = 45”. The octahedral shear strain can be viewed as a 
measure of the average distortion produced by the strain 
tensor because the starting position, the octahedral 
normal, has an orientation equidistant from all three 
principal strain directions. In this context, it is worth 
comparing yoc., to the average shear strain 7 at a point, 
which can be calculated by numerical Monte Carlo 
integration of (11) with respect to 1, m. n using an 
initially random distribution of material lines (Press et 
al. 1992, p. 155). The results of this calculation are 
shown in Fig. 3, as determined for a range of geologically 
representative strain values (R,,. = 1.0 to 6.0, and 
Si. = 0.25 to 4.0). The data show that the octahedral 
shear strain is proportional to the average shear strain, 
as indicated by the following approximate relationship: 
y I- 0.761 Yocr. This exercise demonstrates that yoc, is, in 
fact, a fundamental measure of the average distortion, 
and is independent of the rotational and volumetric 
components of the deformation. Note that 7 is probably 
preferred over Y(,<, because it provides a direct measure 
of the average shear strain, but any advantages are 
outweighed by the greater effort needed to calculate 7. 

To my knowledge, there is no closed-form analytical 
expression that relates Y(,<, to F,,c,. Numerical calcu- 
lations indicate that Ye,,., is not solely dependent on F,,,.r. 
Nonetheless, an approximate relationship can be de- 
rived by combining (IO) and (13) and by setting 
ERrz = 0: 

~<,c, = 213 &osh(&2 r,,.,) - 1. (14) 

Figure 4 shows a comparison between this approximate 
solution (line) and some selected exact results (circles). 
Errors are (3.5 percent over the range relevant for 
geologic strains (RX?, = 1 .O to 6.0, and S.\, = 0.25 to 4.0). 
Equation (14) indicates that yoc, has an approximate 
cylindrical form in strain-magnitude space. Contours of 
yorr appear as nested circles in the Nadai diagram (Fig. 
2b) and as nested ellipses in the Flinn diagram (Fig. 2a) 
(see Appendix B for further details). 

To conclude, the Nadai diagram provides a better 
representation of deviatoric strains because distance 
from the origin is directly related to deviatoric strain 

magnitude, as represented by E,,, F,,,.,, or Y<,<,. All of 
these parameters have specific applications where they 
excel. All are solely a function of the final principal 
deviatoric strains and are therefore independent of the 
strain path, principal directions, volume strain, and 
rotational component of the deformation. The natural 
deviatoric-strain magnitude Ed provides a correctly- 
scaled measure of distance in strain-magnitude space. 
The natural octahedral shear strain I‘,,,., is conceptually 
useful because of its relationship to work. The conven- 
tional octahedral shear strain yorr is representative of the 
average distortion caused by the deformation. 

VOLUME-STRAIN SECTIONS 

To illustrate the relationship between volume strain 
and the other strain invariants, we need to examine 
sections that include the volume-strain axis and thus are 
orthogonal to the deviatoric section. 
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Fig. 5. The E,.-Ed diagram compares volume strain to deviatoric 
strain. Strain data and plot symbols are explained in Fig. 2. Note that 
the data show no obvious correlation which suggests that the volu- 
metric and deviatoric strains were decoupled. The primary axes, E, 
and E,, are shown in units of natural strain in order to preserve the 
correct relative scaling between these two parameters. The secondary 
axes show the more familiar parameters volume stretch S, and conven- 

tional octahedral shear strain yoC,. 

E,- E, diagram 

The first diagram (Fig. 5) compares volume strain with 
deviatoric strain, using the natural-strain parameters E, 
and Ed to ensure that the relative scales of the axes are 
equivalent and that distance is correctly represented. 
More familiar measures of volume stretch S, and con- 
ventional octahedral shear strain yoct are shown on 
secondary axes (Fig. 5). Note that the E,-Ed diagram is 
not a sectional view in the strict sense because the 
deviatoric-strain component Ed can lie in any direction 
within the deviatoric section (Fig. lc). The Franciscan 
strain data (Fig. 5) show no evidence of a systematic 
relationship between volume strain and deviatoric 
strain, which suggests that these two components are 
controlled by different processes. 

S,-S, diagram 

The S,-S, diagram (Fig. 6) is useful for distinguishing 
strain type. Note that distance, as measured by E,, is 
distorted in the SV-S, diagram because the E, and E, 
axes are not orthogonal in strain-magnitude space (Fig. 

1). However, this feature is not needed to distinguish 
strain type. Therefore, to keep the diagram simple, S, 
and SY are plotted using an orthogonal set of log-log axes 
with equivalent scaling for both axes. 

The diagram (Fig. 6) is divided into four fields. The 
first two fields, dilation (S, > 1) and compaction 
(S, < l), are defined by volume strain and delimited by 
the isochoric strain line (S, = 1). The second two fields, 
constriction (S, < 1) and flattening (S, > l), are defined 

by the intermediate principal strain and delimited by the 
true plane-strain line (S, = 1). 

The relationship between relative strain and absolute 
strain can be illustrated by plotting Sk contours showing 
the intermediate deviatoric strain (Fig. 6). The equation 
for each contour is defined by: E, = 3(E, - E;). As an 
example, consider a relative strain measurement of 
S; = 1.2. The Sb = 1.2 contour shows all possible combi- 
nations of S, and S, for this deformation. By assuming a 
volume strain, we can identify the strain type. For 
instance, if S, = 1, the strain type would be flattening. If 
S, = 0.6, the strain type would be plane strain. 

In my opinion, strain type is best analyzed using the 
S-S,, diagram. Even relative strain data can be por- 
trayed by using the measured S; values and assuming 
some reasonable range for the unmeasured volume 
strain, such as S, = 0.6 to 1.0. The data can be plotted as 
line segments parallel to the S,; contours, or the range of 
the data can be represented by a bounding box. This 
approach avoids the problems inherent in using a Flinn 
or Nadai diagram to interpret strain type (e.g. apparent 
vs true flattening, etc.). 

S,-S, diagram 

The last diagram considered here, the S,-S, diagram 
(Fig. 7), is introduced mainly as a means for examining 
how volume strain and extension relate to cleavage 
formation. The diagram is a log-log plot with equivalent 
scaling used for both axes. Note that the S, and S, axes 
are not orthogonal in strain-magnitude space, so dis- 
tance is not preserved in the S,-S, diagram, except along 
the S, and S, axes. 

Cleavage is known to form in an orientation approxi- 
mately normal to z, the maximum contraction direction 
(e.g. Wood 1974, Ramsay & Huber 1983). With increas- 
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Fig. 6. The S,-S, diagram is used to distinguish strain type. See Fig. 2 
for explanation of plot symbols. Dilation and compaction indicate 
volume gain and volume loss, respectively. The intermediate principal 
stretch S, is used to distinguish between constriction and flattening. 
‘True PS line’ indicates the true plane-strain line. The diagonal lines 
show contours of Sl. the intermediate deviatoric stretch. These con- 
tours can be used to represent relative strain data, as explained in the 

text. 
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ing deviatoric strain, cleavage fabrics become better 
developed and more penetrative due, at least in part, to 
the development of a stronger preferred orientation of 
the phyllosilicates (Oertel 1983). The maximum axial 
ratio R,, is used here as a proxy for cleavage intensity 
because it provides a simple measure of the deviatoric 
strain in the xz section where shear strains are greatest. 
Consider the following general equation for ERxz: 
E Rxr = 2E, + E, - E,. If we restrict our discussion to 
plane-strain deformation (E, = 0), then: 

E, = 2E, - E,,. (15) 

The two terms on the right can be viewed as representing 
the open and closed parts, respectively, of the deforma- 
tional system. 

To illustrate this problem graphically, contours of R,, 
are plotted in Fig. 7 as prescribed by (1.5) for the plane- 
strain case. The strain paths in Fig. 7 illustrate two end- 
member cases. Path A shows an isochoric plane-strain 
deformation, whereas path B shows a non-extensional 
plane-strain deformation. The first case is a closed 
system: the extension in the x direction is balanced by 
shortening in the z direction (E, = -EZ, E, = E, = 0). 
In the second case, the system is open: the shortening in 
the z direction is entirely balanced by volume loss, 
resulting in zero extension in the x direction (E, = E,, 
E, = E, = 0). As indicated by (15), the closed-system 
case (A) requires half as much strain as the open-system 
case (B) to produce the same R,,ratio. This relationship 
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Fig. 7. The S,-S, diagram is used to examine the relationship of the 
maximum axial ratio R,, as a function of volume strain and extension 
for a plane-strain deformation. R,, provides a simple measure of the 
distortional strain and thus is used as a proxy for cleavage intensity, 
which is primarily a function of deviatoric strain magnitude. Two end- 
member strain paths are shown. Path A represents an isochoric 
deformation where shortening in the z direction is balanced by exten- 
sion in the x direction. Path B shows an open-system deformation 
where the shortening in the z direction is fully compensated by loss of 
volume. Distance in the S,-S, diagram is distorted except along the S, 
and S, axes. With this in mind, note that the closed-system path (A) is 
half as long as the open-system path (B), which indicates the closed- 
system path only required half the strain magnitude to produce the 
same distortion (e.g. R,, = 2.5). The Franciscan strain data do not 
follow either of these strain paths. This result is taken as evidence that 
during cleavage formation, material transport occurred both by local 

dissolution and precipitation and by wholesale mass loss. 

is illustrated graphically by the relative lengths of arrows 
A and B in Fig. 7. 

The strain data in Fig. 7 do not fall on either of these 
strain paths, which indicates that the development of 
cleavage fabrics, as represented by R,, values, appar- 
ently involved both closed- and open-system processes. 
The dominant mechanism responsible for ductile defor- 
mation in these sandstones is pressure solution, Diag- 
nostic fabrics include: (1) the development of 
discontinuous selvages composed of dark insoluble 
minerals which form an organized spaced cleavage, (2) 
truncation of detrital grains along surfaces subparallel to 
cleavage, and (3) the formation of directed fiber over- 
growths in the x direction and locally in they direction as 
well. The open-system behavior is indicated by dissol- 
ution and wholesale removal of the more soluble com- 
ponents of the rock, presumably due to regional-scale 
flow of a solvent fluid phase. The closed-system behav- 
ior apparently reflects grain-scale transport of the rela- 
tively insoluble components of the rock which are 
ultimately crystallized as fiber overgrowths. If the solu- 
bility of the components that make up the fiber over- 
growths is small, then the transport of these components 
must be restricted to diffusion length scales (< - 10 cm), 
even if the rates of fluid flow are large. 

TENSOR AVERAGE IN STRAIN-MAGNITUDE 
SPACE 

An important limitation of strain-magnitude space is 
that it does not account for the directional information 
contained in strain-tensor data. This deficiency is high- 
lighted by comparing a distribution of measured strain 
data, as represented in strain-magnitude space, with its 
tensor average. To determine the average strain, we 
need to account for the strain data as tensors. Paterson 
& Weiss (1961)) Cobbold (1977), and Oertel(l981) have 
discussed various approaches for estimating such an 
average. The method used here is outlined in Appendix 
A. 

The tensor averages for the example datasets are 
indicated by the open symbols in Figs. 2 and 5-7. Note 
that the averages do not coincide with the modes of their 
respective sample distributions. As a general rule, the 
deviatoric strain magnitude indicated by the tensor aver- 
age will always lie on the low side of the distribution 
unless the individual strain tensors all have the same 
orientation. This situation is analogous to vector distri- 
butions where the average magnitude of the vectors as 
determined by a vector-averaging method will always be 
less than or equal to the scalar average of the vector 
magnitudes where no account is made for orientation. 

This bias does not carry over to the volume-strain 
data. As an example, consider the tensor averages as 
shown in Fig. 5, which coincide roughly with the modes 
of their respective volume-strain distributions. The 
reason is that volume strain is a scalar measure with no 
directional properties. Furthermore, the best estimate 
of the ‘average’ (i.e. the most likely value) for a real 
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distribution of volume strain measurements is the logar- 
ithmic mean of the volume stretches S, or the arithmetic 
mean of the natural volume strains E, (see Appendix A 
for details). 

The bias of the strain-magnitude distribution in the 
deviatoric section may have important implications for 
the plane-strain paradox. Various compilations have 
shown that relative strain data tend to plot within the 
oblate field of the Flinn diagram (Ramsay &Wood 1973, 
fig. 8; Pfiffner & Ramsay 1982, fig. Al). This result 
appears at odds with the expectation that at the regional 
scale, geologic deformation should approach, on aver- 
age, the plane-strain condition. The explanation pro- 
vided by Ramsay & Wood (1973) is that the compiled 
data were variably affected by compactional volume 
strains which would tend to shift the data distribution 
into the oblate field. An alternative explanation is that 
this offset is due, at least in part, to the bias introduced 
by plotting strain distributions on the deviatoric section. 
One way to account for this bias would be to calculate 
tensor averages for strain data from individual study 
areas. This information is not available for the compila- 
tions of Ramsay & Wood (1973) and Pfiffner and Ram- 
say (1982) but probably should be considered in any 
future compilation. 

CONCLUSIONS 

This paper has reviewed the use of strain-magnitude 
space for the analysis of strain data. This approach helps 
to place the commonly used Flinn and Nadai diagrams 
into a broader context and provides a more flexible basis 
for studying the relationship between volume strain and 
deviatoric strain. 

I conclude with the following recommendations: 
(1) Total strain magnitude can be decomposed into 

two orthogonal components, E, and Ed, which are 
fundamental scalar measures of the volume strain and 
average distortion produced by deformation at a 
material point. 

(2) The Nadai diagram is the preferred device for 
portraying the deviatoric component of strain data be- 
cause it provides an undistorted representation of the 
deviatoric section. The use of this diagram should be 
restricted to the classification of strain symmetry and the 
examination of deviatoric strain paths. 

(3) The S”-S, diagram is the preferred tool for discri- 
minating strain type. This diagram is suitable for both 
absolute and relative strain data. Furthermore, it clearly 
shows how the interpretation of relative strain data are 
influenced by assumptions about volume strain. 

(4) The E,-Ed and S,-S, diagrams are useful for 
examining the relationship between deviatoric strain 
and volume strain as it relates to deformational pro- 
cesses and cleavage formation. 

(5) The average of a strain-magnitude distribution 
should not be equated with the mode of the distribution. 
Instead, a suitable tensor-averaging method should be 

used so that direction and magnitude information are 

fully represented in estimates of average values. 
(6) My last recommendation, and perhaps most im- 

portant, is to encourage a more general use of strain- 
magnitude space as a basis for constructing strain dia- 
grams and for the interpretation of strain paths. Particu- 
lar attention should be given to the proper scaling of 
distance and to the identification of coordinate axes 
appropriate for the problem at hand. 
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APPENDIX A 

Tensor average fvr strain 

A method for calculating an avcragc strain tensor is summarized 
here. The problem can be stated as follows: given a set of strain-tensor 
measurements randomly sampled from a region that is statistically 
homogeneous at the scale of sampling (Paterson & Weiss I961), WC 
seek to estimate the avcragc strain tensor for that region. One 
definition of the regional avcragc strain is that it corresponds to the 
tensor that most closely represents the strain experienced by a material 
line that bounds the sampled region (Cobbold 1977). The only way to 
calculate this type of average is to reconstruct and integrate the full 
deformation. strain plus rotation, within the region using the strain- 
compatibility relationships (e.g. Cobbold & Percevault 1983). This 
approach requires: (1) identification of domains within the sampled 
region where strain is relatively homogeneous, and (2) accurate 
determination of the average strain within each domain. In most cases. 
strain data arc not dense enough nor the deformation sufficiently 
homogeneous at the domain scale to warrant such an approach. Thus, 
these considerations have Icd mc to cxplorc a simpler approach where 
the rotational component of the deformation is ignored. Numerical 
experiments arc used to determine the biases introduced by this 
simplification. Oertel (1981) presented a useful discussion of the 
problems associated with calculating average strain; the method pro- 
posed here is similar to his ‘directed method’. 

A general finite deformation is usually described by F = VR. where 
F is the deformation-gradient tensor, V is the left-stretch tensor. and R 
is the rotation tensor (Malvern 1969, p. 173). A simple modification 
provides an explicit account for rclativc strain data: F = (V’S:.“) R. 
where V’ is the left dcviatoric stretch tensor and S, is the volume 
stretch. The objective is to cstimatc tensor averages for V or V’ using 
only absolute or rclativc strain data, as the cast may be. The reliability 
of the estimated tensor average depends heavily on the assumption 
that the distribution of sampled strain tensors is representative of the 
parent population. For instance, if some component of the defor- 
mation field is not represented by the measured strain data-such as 
brittle deformation caused by widely spaced faults or ductile defor- 
mation in poorly sampled lithologies with unusual rheological 
properties-then the tensor average will be biased. This reprcscnts a 
sampling problem and not a dcficicncy of the averaging method itself. 

To calculate the strain-tensor avcragc. WC first riced to transform 
each of the individual tensor measurements into a natural-strain tensor 
H (Truesdell & Toupin 1960. p. 269), which Elliott (1972) called the 
Hencky strain matrix. The principal values for H are the natural 
principal strains E,. E,. E,, and the principal directions arc the same as 
those for V. To state this relationship explicitly. consider the principal 

form of V = T Av T’, where A, = DIAG{S,, Sy, S,} and T is a 3 x 3 
transformation matrix whose columns are unit vectors representing 
the three principal strain directions. DIAG{} defines the components 
of a diagonalized square matrix, and T’ is the transpose of T. The 
Hencky strain tensor is then defined as: H = T Ar, T’, where 
A, = DIAG{E,. E,, EI}. 

The tensor average is determined by a simple component-by- 
component average of H: AVE(H) = (l/n) ZH,, where Hi represents 
the ith strain tensor in a distribution containing n tensor samples. 
Eigenvector decomposition of AVE(H) gives the directions and mag- 
nitudes of the average natural principal strains. This procedure can 
also be used to estimate the tensor average for V’ by introducing a 
deviatoric version of the Hencky tensor. H’ with principal values E;, 
E;, El. 

I have tested this averaging method using synthetic data generated 
by introducing stochastic variations into a general three-dimensional 
rotational deformation. The deformation is specified by a velocity- 
gradient tensor L that remains constant at a material point but 
otherwise varies from point-to-point. The finite deformation F at the 
material point is determined by numerically integrating the material 
derivative DFIDr = LF (McKenzie 1979). The simulation can be 
viewed as representative of a deforming material where each material 
point sees a steady deformation but the deformation of the material 
body as a whole is inhomogeneous. Note that the simulation can ignore 
the issue of strain compatibility because strain and rotation are fully 
specified at each sampled point and because we can invoke arbitrary 
deformation gradients for the regions that lie between the sampled 
points. This approach is fairly simple minded, but it provides a 
reasonable first-order representation of the variations that might exist 
in a real strain-tensor distribution. 

The first step in generating a synthetic dataset is to produce a 
distribution of L, samples where i = 1 to n. The components of the 
expected velocity gradient tensor (L) are independently perturbed 
using Gaussian variants to generate each L, sample. Integration of the 
L, samples gives a distribution of F, samples. The expected 
deformation-gradient tensor(F) is defined by the integration of(L). (F) 
is then decomposed to find the cxpccted left stretch tensor (V). 

Let us examine some results. Consider a case where the average 
deformation. as indicated by (L). is coaxial but the L, distribution 
includes both coaxial and noncoaxial samples. This case is analogous 
to a deformation that is coaxial at the regional scale, but is charactcr- 
ized by folding (i.e. variable noncoaxial deformation) at the local 
scale. The numerical simulations show that the tensor-averaging 
method produces unbiased estimates of (H) and (H’). and their 
counterparts(V) and (V’). 

Now consider a case where the avcragc deformation. as prescribed 
by (L), is noncoaxial. In this case, the tensor-average method shows 
signiticant biases. but this result is not unexpected given that the 
averaging scheme lacks information about the rotational component 
of the deformation. My experience to date indicates that for strain 
magnitudes and internal rotations typical of geologic deformation, the 
orientation of the average principal directions are accurately esti- 
mated, but the average principal strctchcs arc biased, but usually by no 
mom than lO_20% of their magnitudes. For example, consider an 
isochoric simple-shear deformation that results in an average defor- 
mation with principal stretches of 3.33, I .O and 0.30 and an internal 
rotation of 57”. For a reprcscntativc simulated distribution with 
II = 10.000. the tensor-avcragc method gives principal stretches of 3.0, 
1.03 and 0.36. The biases arc systematic in that the estimates for S, arc 
always on the low side, and those for S; arc always on the high side. 

As for volume strain. the tensor-avcragc method products an 
estimate that is identical to the average of the natural volume strains, 
AVE(E,) = (LIn)X(E,),. This result is entirely expected given that 
volume stretch S, is a ratio quantity. Aitchison (1986) showed that the 
cxpectcd value for a distribution of ratio measurements is usually best 
cstimatcd by the logarithmic mean. which in our cast would be: 
AVE(ln S,) = (l/n) Zln (S ) , 1 

APPENDIX B 

Constructing the Nadai diagram 

Hsu (1966) and Hossack (1968) proposed a radial version of the 
Nadai diagram using E, and the Lode’s parameter, v. Unfortunately, 
radial plots arc not supported in most graphics programs. The version 
of the Nadai diagram used here (Fig. 2b) is based on an orthogonal 
log-log plot, an option available in almost all graphics programs. 
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Another advantage is that it uses familiar coordinate variables, Rx, and 
Sk,, which help convey more information. The details for constructing 
thus version of the Nadai diagram are outlined here. 

Start with a square plot and logarithmic axes. We need to adjust the 
ranges for Rx, and S; to ensure that the two axes have equal lengths in 
E, units. R,, is set to range from 1 to MAX(R,,), which is the 
maximum observed value for the data. The minimum and maximum 
values for S; are determined by: 

MAX(E;) = V’i?i?MAX(E,,), and MIN(E;) 

= -m MAX(E,,,). (BI) 

These equations account for the scaling relationships implicit in (9) 
and the fact that the S; axis is centered on one. The borders of the 
accessible sector of the deviatoric section are defined by: 

E Rxz = -3E; and E,, = 3 El, (B2) 

which represent the EL and E: axes, respectively (Fig. lc). If the plot is 
correctly scaled, these lines will lie at 30” on either side of the vertical. 

To add contours of conventional octahedral shear strain (Fig. 2b), 
we need to specify Ed as a function of ~bc,. The approximate relation 
(14) can be reorganized by using identities and inverse relationships 

for the hyperbolic functions and by substituting Ed = d3x Iocr to give: 

Ed = V% ln(v + v;i’--r,, (B3) 

where 7 = (9/4)y&, + 1. To plot a specific yoCt contour, first determine 
the radius of the contour in terms of Ed using (B3). Next, convert to 
coordmates of E, and E; using: 

E Rrz = tiEdcosp, and E; = d2xEd sin /I, (B4) 

To draw the contour, calculate values of E,, and E; as B varies from 
-30” to +30“ (Fig. lc). 


